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I. INTRODUCTION

The in flight characteristics of an artillery shell are of /
major importance to the shell designer, ballisticion and ultimately the
artillery field commander whose mission is deployment of timely and
accurate fire power. The aerodynamic properties of artillery shell,
such as pitching moment, Magnus moment and drag are critical to the
stability of shell which in turn significantly affects accuracy and
time of flight. The capability to determine the aerodynamics of shell
is required over a wide range of flight regimes since, depending on
initial launch velocities, artillery shell are subject to subsonic,
transonic, and supersonic flight. Projectile aerodynamics over these
various flight regimes have been found, in some cases, to change by an
order of magnitude. The solution techniques utilized must therefore
be capable of computing these changes.

concentrated theoretical and experimental research program
has been ongoing at BRL in order to develop the predictive capabilities
required for determining projectile aerodynamics. Supersonic
computations using combined inviscid flow field and boundary layer
techniques have been developed* _-Stur"o ) _et-a-l.,for cone-cylinder
and ogive-cylinder configurations. R-ecent results have been obtained
in supgronic flow over a typical .boattailed pEoectil f
uek-"xsing modern computational techiques for solving the thin-

klayer Navier-Stokes equations.
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Inviscid transonic computational results have been obtained
by Reklis -

, et al., for a secant-ogive-cylinder-boattail shape. The
inviscid techniques give good results for pitch plane aerodynamic
coefficients at small angle of attack. However, this technique lacks
the ability to include viscous effects at transonic speeds and thus
compute the Magnus effect on projectiles. Techniques which have been
applied in supersonic flow for combining inviscid and boundary layer
methods have not been fully established for transonic flow. These
methods, which have shown good results for ogive-cylinders in
supersonic flow at low angle of attack, are not accurate in modeling
the severe flow expansion in the vicinity of surface discontinuities
such as those that occur at the cylinder-boattail junction.

The solution of the thin-layer Navier-Stokes equations, which
allows for the simultaneous computation of the inviscid and viscous

regions, eliminates the need for matching two different solutions.
Additionally, since all three momentum equations are retained, the
ability to compute in regions of separated flow is achieved. This
paper describes the governing three-dimensional thin-layer Navier-Stokes
equations used for computing flow over projectile shapes at angle of
attack. Secondly, the generalized axisymmetric formulation used for
computations at a = 00 will be described. A description of the
numerical algorithm and results will follow. Experimental and
computational results will be presented for a secant-ogive-cylinder-
boattail projectile shape at a = 0* and a = 20. Computational results
will also be shown for a ring airfoil shape thus demonstrating the
general geometry capability of the present numerical scheme.

II. GOVERNING EQUATIONS

The generol three-dimensional thin-layer Navier-Stokes
equations, used for all cases where a = 00, are described in Section Ila.
The thin-layer generalized axisymmetric equations, which are a special
case of the 3-D equations, are described in Section Ilb.

a. Three-Dimensional Equations

The transformed three-dimensional thin-layer Navier-Stokes
equations tn non-dimensional and strong conservation law form are
written as 

4

3TT3 q + D E + 3 1: + 3 G =Re aS K
where general coordinate transformations
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NIETBI C = CKAYSERt - longitudinal coordinate

n= rI(x,y,z,t) - circumferential coordinate I'

= r (X,yjz,t) - near Normal coordinate

T =t - time

are used and

p PU
pu puU + x1 JyvJ1pv
pW EJ pV+ y

e pwlJ + C Zp

L(e+p)IJ - p

z

L(e+p)V - n jL(e+p)W - 1

W4 2+C2+C2)U +~/)~U+ ~w)x y z C p3 cxu+ y v z WC) x

x y z C x r y~ zC y

S J-1  p(C2+C2+C2)w *(ii/3) ( u +i vc+c w )cx y z C x~ C z r; z

+(ji/3)( U+C V+ w)(C uC+C v +r w
x y : r y; z C
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The velocities

U = t + xu + yV + zw

t x y z

V = t + nxu + nyv + nzw (2)

W= t+ Cxu + Cy v+ w

represent the contravarient velocity components.

The Cartesian velocity components (u,v,w) are retained as the
dependent variables and are nondimensionalized with respect to a (the
free stream speed of sound). The local pressure is determined using
the relation

p = (y - l)(e - .5p(u 2 + v2 + w 2)) (3)

where y is the ratio of specific heats, density (p), is referenced to
p and total energy (e) to p a 2 . The additional parameters are (K)

t e coefficient of thermal conductivity, (p) the dynamic viscosity,
(Re) the Reynolds number, (Pr) the Prandtl number, and (X) which
through the Stokes hypothesis is (-2/3)p.

The metric terms EI nx and x are formed from the derivatives

x, yE, z, etc., and together with the Jacobian of the transformation

allow for computations to be performed for variable body geometries.

The "thin-layer" approximation (4 -7 ) used here requires that
all body surfaces be mapped onto c = constant planes and that Re >> 1.
Essentially, all the viscous terms in the coordinate directions (here
taken as E and n) along the body surface are neglected while terms in
the C or the near normal direction to the body are retained. This
approximation is used because, due to computer speed and storage
limitations, fine grid spacing can only be provided in one coordinate
direction (usually taken as the near normal direction) and the grid
spacing available in the other two directions is usually too coarse to
resolve the viscous terms. For the type of problems currently under
investigation, i.e., projectiles at low angles of attack, with no strong
cross-flow separation, these approximations are considered valid.

b. Generalized Axisymmetric Equations

The thin-layer generalized-axisymmetric equations are obtained
from the three-dimensional equations by making use of two restrictions:
(1) all body geometries are of an axisymmetric type; (2) the state
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variables and the contravariant velocities do not vary in the

circumferential direction. In what follows, the 3 F term of Eq. (1)

shall be reduced to the source term of the generalized axisymmetric

equations.

A sketch of a typical axisymmetric body is shown in Figure La.

In order to determine the circumfer-
I... R ential variation of typical flow and,Zt _ - geometric parameters, we first

y establish correspondence between the

inertial Cartesian coordinates (x,y,z)
PROJECTItE30Y X CCNS. PLANE (to which the dependent variables are

referenced), the natural inertial

cylindrical coordinates (x,4,R), and
RV the transformed variables (

The choice of the independent
N P x variables C, n, c is restricted, as

(C) shown in Figure Ic, insofar as n must

vary as 0, i.e., 0 = Cn (where C is a
F!GURE 1. AXSflqqEhIC a00Y AND CO0RD SYSr'.. constant). From the views shown in

Figure 1, the relationship between the
coordinate systems are observed to be

x = x(E,)T)
(4)

y = R(&,C,T)sinO

z = R( , ,T)COSO

where ) = 4() and the Cartesian and cylindrical coordinates are

related in the usual way. Note that x and R are general functions of

only , , and T.

Evaluating the metric terms given the above assumptions and

substituting in Equati9n. (1) the resulting thin-layer generalized

axisymmetric equations" 5 can be written as

q + 6E + a G + H =Re -1 a S (5)

where
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0
0

H = J- Pv[g (u-t) + d ]  (6)

-pVR n (V-nt) - p/(Ren )

L 0

is the resultant source term which has replaced 3 F of Equation (1)

Equation (5) contains only two spatial derivatives but does
retain all three momentum equations thus allowing a degree of generality
over the standard axisymmetric equations. In particular, the
circumferential velocity is not assumed to be zero allowing then
computations for spinning projectiles or swirl flow to be accomplished.

The numberical algorithm used for both equations (1) and (5)
is a fully implicit, approximalely factored finite difference scheme as
analyzed by Beam and Warming 8a . The algorithm for Equation (1)
written in the delta form is

(I + h6M An - EI J-V CJ)(I + 6T B - £I J-V V J)x
n he1, J-I~nj -I VV J)(q n ~l  qn

(I + h6 - h: 6 - n J
(7)

-At(6&E + 6 F + 6 G _ Re- 1 6 )

-2EJ [(vgv ) + (V V) 2 + ( )2,Jqn

where the 6's are central difference operators, A and V are forward or
backward difference operators; h = At corresponds to Euler implicit
first-order and h = At/2 to trapezoidal second-order time accuracy.
The scheme can be first or second order accurate in time and second or
fourth order accurate in space. A similar algorithm can be written for
Equation (5) as
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(I + MA n - Ep-IV V J)(I + hM Cn - C -JV V J

h -1~ f J j). T1~ -

hRe 16 CJMj) x (qn q -At(6 + 6 n (8)
-Re- 16 Sn)-Ati n - C J-1[(V V )2 Jaq n

Notice that the second factored terms of Equation (7) has been reduced

to the term Akt n and appears on the right hand side of Equation (8).
The details of the numerical method, algorithm and boundary conditions
for each formulation can be found in References (4) and (5) respectively.

I11l. MODEL GEOMETRY AND EXPERIMENTAL MEASUREMENTS

The ogive-cylinder boattail shape used for this study closely
resembles a modern low-drag artillery projectile and can be seen in the
pressure coefficient plot of Figure 2. The model has a three caliber
ogive, a two caliber cylinder, and a one caliber 7-degree boattail;
the model length is 343mm and the diameter is 57.2mm.

Several wind tunnel experiments have been conducted for this
model geometry in order to obtain data for comparison to numerical
computations. Experimental data used for comparison in this study are
boundary layer profile measurements obtained at the Naval Surface
Weapons Center (NSWC), White Oak Laboratory and surface pressure
measurements obtained at the NASA Langley Research Center.

Boundary layer data were obtained in the NSWC Tunnel No. 2
which has an open jet test section with a nozzle exit size of
40.0 ) 40.6 cm. Data were acquired at Mach = 0.908 with a supply
pressure of one atmosphere and a supply temperature of approximately
320'K; these conditions give a Reynolds number of 4.5 x 10r based on
model length. The NSWC Laser Velocimeter used to measure the boundary
layer velocities is commonly referred to as a forward scatter.
differential Doppler or "fringe" system and is described in Reference
(9). Previous boundary layer measurements at Mach = 3.0 obtained by
both laser velocimeter and by impact probe measurements showed good
agreement. The present Mach = 0.908 profiles, however were not as
consistently smooth and uniform as the Mach 3 profiles described in
Reference (10).
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Surface pressure measurements were obtained in the NASA
Langley 8 ft Pressure Tunnel with supply pressures and temperatures of
one atmosphere and 320'K respectively. The model was instrumented
with pressure taps at 15 longitudinal stations. Data were acquired
at Mach numbers of 0.91 to 1.20, angles of attack from 0 to 10 degrees,
and for circumferencial positions by rolling the model in 22.5 degree
increments.

IV. COMPARISONS BETWEEN COMPUTATION AND EXPERIMENT

Computations have been obtained on the same secant-ogive-
cylinder boattail (SOCBT) shape used for the experiment. The 3-D
Navier-Stokes equations were used for a > 00 and the generalized
axisymmetric formulation for a = 00. Computational results have been
obtained for a ring airfoil shape which show an interesting shock
pattern being developed as a function of Mach number.

a. Secant-Ogive-Cylinder-Boattail, a = 00

A computational finite difference mesh of 78 longitudinal
points by 50 normal points were used for these calculations. For the
experimental test condition of Mach = 0.908 the surface pressure
coefficient, C is shown as a function of axial position in Figure 2.

P The computational results,
0.2-0' indicated by the solid line are

- X.- R shown to be in good agreement with
0.0 "VIM STg the experimental results. The flow

I expansion (decrease in C p) and
subsequent shock (increase in C

can be seen occurring near the
4.4- nose-cylinder and cylinder-boattail

junctions. An accurate computation
of the pressure distribution is
important since it is the41, integration of surface pressures

. .. . .which are primarily used to
I/D determine the aerodynamic

! £IPOTAL AN rKOETICAL C O ff SURFACE PRESSURE coefficients.
ZOEUFIMV 'ON SOCI. R . O.348

Increasing the Mach number to M = 0.96 (Figure 3) shows the
movement of shock position, which is typical of transonic flow.
Again the experiment and computations show good agreement with the
exception of the boattail region. This discrepancy is attributed to
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inadequate grid resolution in the vicinity of the shock. A more
detailed look at the computed shock position can be seen in Figure 4
(above) where Mach contours have been plotted. The coalesence of the
Mach lines represent the position of the shock and regions of subsonic
and supersonic flow are identified.

The accurate determination of aerodynamic coefficients is
extremely important throughout the transonic regime since the
magnitude of the coefficients can change by as much as 100% in this
area. A series of computations were obtained from M = 0.8 through
M = 1.1 and the surface pressures were integrated to determine the
aerodynamic wave drag. The results are shown in Figure 5 together with

the experimental data. Excellent
agreement is shown for both the

Xdrag rise and magnitude of the
x zero yaw drag, CD, in the

o 0
0.16critical Mach number regime.

I

X X 
v n$'os.00 x

a.? 0.8 0.6 1.0 1.1 1.2

S [. Z[I YAIWA, S08MT. *, . 0. SW M
AND E010.
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The dynamic stability of shell is one area of concern when
designing new shell or modifying existing ones. The Magnus moment,
which affects the dynamic stability, is a viscous phenomena. Therefore

an accurate representation of the viscous portion of the flow field is
crucial to computing the Magnus moment. As an initial attempt to look
at the boundary layer in transonic flow, with its associated shock
interaction, computations were performed at M = 0.908, a = 00 and
comparison of computational velocity profiles with experimental profiles
were made; an example of this comparison is shown in Figure 6. The

Navier-Stokes result is the
1.5 '9 solid line and the circles are

4 .0.0 the experimental results.
4 ,.. 0 Although the computational and

• UEU? experimental velocity profiles
I- STOKE So01 velocity

(0.,P17 are not in particularly good
agreement, the shape of the

computed profiles is seen to be
05 characteristic of a turbulent

4 0 boundary layer. A power law
velocity profile, characteristic

0 .of turbulent flow, is included

.for comparison.

0.0 0.2 0.4 0.8 0.1 1.0
wu

FIGURAE 6. YELOUTY PROFILES 4T' XIO *4.0

b. Secant-Ogive Cylinder Boattail, a = 20

A new finite difference mesh consisting of 60 longitudinal
points, 28 normal points and 20 points in the circumferential
direction was designed for computations at angle of attack. Clustering
of the longitudinal points was maintained in the vicinity of the
expansion similar to the a = 00 cases. The computed leeward (4 = 00)
surface pressure coefficients, as a function of longitudinal position
are shown in Figure 7 compared to the experimental results. The
computed results are shown to follow the same trend as the experimental
data. The agreement in the vicinity of both expansions is quite good
but falls off on the cylinder and boattail. A major problem in running
3-D computations is the large number of grid points required for
adequate resolution. Increasing the number of longitudinal points, similar
to the amount used for a = 00 (78 points) should result in better
agreement.
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c. Hollow Projectile, a = 0'

Of current interest in shell design is the utilization of
hollow projectiles which have the characteristic of "flat" trajectories.
A shape of this type, known as the ring airfoil, has been type
classified and is currently used as an anti riot device. In order to
demonstrate the general geometry capabilities of the Navier-Stokes codes,
computations were performed for a ring airfoil shape at a = 00. A
cross section of the actual shape is shown at the bottom of the C plot

of Figure 8a. Inviscid results are presented in Figures 8a, b, c and d
for M = 0.4, 0.7, 0.8 and 0.9. In all cases the pressure distribution
is plotted for the internal and external surfaces using a solid line
and dashed line respectively.
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The critical pressure coefficient, Cp*, is the value of the

pressure coefficient at sonic velocity. The flow velocity in regions
with pressure greater than C * is subsonic and in regions where thep

pressure is less than C * the flow is supersonic. For M = 0.4P
(Figure 8a), all values of C are greater than C * indicating the flow

P p
over both the internal and external surfaces is subsonic. However, as
the Mach number is increased to 0.7, the upper surface is shown to
develop supersonic flow and a shock wave while the internal flow
remains subsonic. Increasing the Mach number still further to M = 0.8,
the shock waves are now seen to exist on both the external and internal
surfaces. A final solution at M = 0.9 shows that the shock wave has
moved to the trailing edge indicating supersonic flow over most of the
internal and external surfaces.

V. SUMMARY

Implicit finite difference methods have been used to solve
the thin-layer Navier-Stokes equations. Both the three-dimensional and
generalized axisymmetric equations have been presented and solutions of
the flow field about projectile shapes have been obtained.

The computed surface pressure coefficients on the ogive-
cylinder-boattail projectile were found to be in excellent agreement
with the experimental data for a = 00. The generalized axisymmetric
equations used for these computations are similar to the 2-D equations
and thus have no severe limitation on the number of mesh points
required for a good solution.

Computations for the same projectile shape at a = 20, using
the 3-D equations, show good agreement with the experimental data.
Computational experimentation indicate that improved agreement could be
obtained with increased grid resolution.

Computations of the viscous boundary layer indicate the
correct trend for a turbulent velocity profile which is critical to
the determination of Magnus moment. Additional experimental velocity
profiles are required to fully access the accuracy of the Navier-Stokes
computations in the viscous region.

The general geometry capability of the numerical scheme was
demonstrated by solving the inviscid flow field about a ring airfoil
projectile. The ability to compute in regions of pure subsonic flow
and mixed subsonic/supersonic flow has been demonstrated.
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